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An extensive search of the literature and data banks identified

studies of water-to-air CO2 exchange in 106 estuaries.

Generally, pCO2 in upper estuaries is highly supersaturated

with respect to the atmospheric CO2, and so a large amount of

CO2 is released to the atmosphere per unit surface area. Wider

mid and lower estuaries are associated with slower river flow

and lower turbidity, and therefore greater biological

productivity. Further, mixing with low-pCO2 seawater reduces

pCO2 and, thereby, the water-to-air CO2 flux on the ocean side.

All of the globe’s estuaries release 0.26 Pg C/y to the

atmosphere. However, nutrients that are provided by large

rivers, such as the Amazon and Changjiang (Yangtze), and

those entrained by the river plumes promote photosynthesis to

such an extent that the water becomes undersaturated.

Accordingly, the large river plumes become a CO2 sink even

many hundred kilometers beyond the river mouth.
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Introduction
Rivers are the major conduits of water, nutrients, minerals

and carbon from land to the oceans. Within river basins,

atmospheric CO2-saturated rainwater falls on rocks and

soils, and CO2 is converted into plant tissue by photo-

synthesis. Yet, most CO2 enters the terrestrial carbon

cycle when rainwater percolates through carbonates

and silicates. Particularly in soils, bacterial oxidation

decomposes photosynthetically generated organic car-

bon. Respiration in roots is an equally important source
www.sciencedirect.com 
of CO2 in soil. Soil water, groundwater, and runoff slowly

find their way into rivers, and carbon is thereafter trans-

ported by rivers to the oceans in the form of dissolved

inorganic carbon (DIC), dissolved organic carbon (DOC),

particulate inorganic carbon (PIC) and particulate organic

carbon (POC). Denudation and mud slides are another

source of ancient carbon in river water [1–3].

In most aquatic systems, respiration exceeds autochtho-

nous gross primary production, with net heterotrophy

sustained by the input of organic carbon from the catch-

ment. Mostly owing to the decomposition of organic

matter, the partial pressure of CO2 (pCO2) in soil water

and river water is supersaturated with respect to CO2 in

the atmosphere. Moreover, remineralization of DOC and

POC that are carried by rivers typically makes river and

estuary ecosystems highly heterotrophic. Consequently,

most rivers, and therefore estuaries, are sources of CO2 to

the atmosphere [2,4–12,13��,14��,15–17]. Since most stu-

dies of the riverine transport of carbon to oceans have

really considered only the amount transported by rivers,

and have ignored the amount released from estuaries [18],

the amount that actually enters the oceans must be

smaller than they have determined.

Although some individual estuaries have been analyzed

in detail, general patterns of the global distribution of the

water-to-air CO2 fluxes in estuaries are still not well

understood, because of a lack of data. Fortunately, a huge

number of studies have recently been published around

the globe. For example, the summary of Chen and Borges

[13��] concerned 32 estuaries, while that of Laruelle et al.
[14��] covered 60. The present investigation considers

106 estuaries for which pCO2 data are available in either

the literature or various data banks. For the first time, the

water-to-air fluxes of CO2 in the upper, mid and lower

estuaries worldwide are systematically analyzed.

Following Elliott and McLusky [19] and Jiang et al. [20],

this work adopts perhaps the most widely applied defi-

nition of an estuary, which was originally offered by

Cameron and Pritchard [21], as ‘a semi-enclosed coastal

body of water, which has a free connection with the open

sea and within which seawater is measurably diluted with

freshwater derived from land drainage’. However, large

bodies of semi-enclosed coastal seas such as the Baltic or

the Bohai, are not regarded as estuaries. Upper/mid/lower
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estuaries are operationally defined as those areas of estu-

aries with salinities below 2, between 2 and 25, and above

25, respectively, whenever salinity data are available.

Otherwise, divisions are artificially made based approxi-

mately on one-thirds of the distance from the point where

the river starts to widen to the river mouth.

General patterns
Although relationships between pCO2 and river hydrogra-

phy, changes in land use, fertilizer and waste water

discharges, atmospheric deposition, water-to-air CO2

exchange, the turbidity and biological productivity of

estuarine water and tidal motions, or the interaction be-

tween the water and the bottom sediments is not always

evident, some general patterns of the saturation state of

CO2 in estuarine waters seem to exist. The narrowness of

upper estuaries causes the flow rate to be high, such that

incoming turbid river water remains turbid. Strong flow

also disturbs bottom sediments, increasing turbidity. As a

result, a lack of light limits biological productivity, and so

the photosynthetic draw-down of CO2 is weak. However,

organic matter that is carried by the rivers is regenerated

and high-pCO2 outflow from salt marshes, mangroves and

submarine groundwater discharge (SGD) help keep pCO2

high, causing CO2 to be released to the atmosphere

[9,20,22–32]. On average, upper estuaries around the world

have a pCO2 of 3033 � 1078 matm and a water-to-air flux of

68.5 � 25.6 mol C/m2/y (Figure 1).

In mid estuaries, pCO2 is normally lower than in upper

estuaries because some of the CO2 in the water has already

been lost to the atmosphere. Additionally, currents and

resuspension of bottom sediments become weaker, so the

transparency is higher. Consequently, photosynthesis is
Figure 1
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enhanced, and the supply of abundant nutrients from rivers

and SGD results in a higher biological draw-down of CO2.

Additionally, per unit estuarine surface area, the input of

high pCO2 outflows from salt marshes, mangroves and

SGD is smaller. Furthermore, mixing with low-pCO2

ocean water is more extensive than in upper estuaries.

Accordingly, pCO2, and hence the water-to-air flux of CO2

in mid estuaries usually declines rapidly as salinity

increases [33,34�,35�,36]. On average globally, mid estu-

aries have a pCO2 value of 2277 � 626 matm and a water-

to-air flux of 37.4 � 16.5 mol C/m2/y (Figure 1).

The values of pCO2, and therefore the water-to-air fluxes

of CO2, are usually lowest in the lower estuaries, because

incoming water from the mid estuary has lost more CO2 to

the atmosphere. Enhanced photosynthesis in the rela-

tively clear water draws down more CO2. More mixing

with low-pCO2 ocean water and lower inputs per unit

estuarine surface area from sediments, salt marshes,

mangroves and SGD than in the upper and mid estuaries

cause pCO2 to be lowest in the lower estuary. In fact,

photosynthesis may draw down enough CO2 from waters

that is already relatively low in pCO2 to make the water

undersaturated, at times turning the edges of the lower

estuary or the river plume into a sink of CO2

[34�,35�,37�,38,39]. Available data demonstrate that the

pCO2 in lower estuaries, excluding river plumes, is

reduced to only 692 � 178 matm (a global average), and

that lower estuaries release only 9.92 � 15.2 mol C/m2/y

to the atmosphere (Figure 1).

Large river plumes
Major rivers provide a disproportionately important link

between terrestrial and marine materials: the world’s 10
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Figure 2
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largest rivers transport around 40% of the fresh water and

the particulate materials that enter the oceans. Further-

more, around 40% of the organic matter in the global

oceans is buried in the deltas of large rivers [40]. A case in

point is the Changjiang (Yangtze) River, which is the

longest and largest river in China in terms of discharge.

The Changjiang River is the third longest in the world,

after the Nile and Amazon Rivers, but in terms of dis-

charge, it ranks fourth behind the Amazon, Zaire and

Orinoco Rivers. The Changjiang has a pCO2 of about

1200 matm in the downstream region all-year-round,

which declines abruptly when seawater is encountered

close to the river mouth. Notably, the East China Sea

(ECS) water, at a salinity of around 33, is usually slightly

undersaturated and seawater with a salinity of 30 contains

only 10% river water. The 10-fold dilution of the Chang-

jiang water by ECS water reduces the pCO2 of the river

water to near the saturation value.

Since Changjiang has a large discharge, the salinity in the

summer is commonly less than 30 in the middle of the

ECS. At this location, however, the turbidity of the plume

is sufficiently low for phytoplankton to bloom, given

enough light and abundant of nutrients. Therefore,

pCO2 is further reduced to as low as 200 matm or lower

in the river plume for most of the year, even many

hundred kilometers from the river mouth [34�,39,41].

Significant river plume-induced water-to-air fluxes of

CO2 have also been found in the Amazon, Mississippi,

Congo, Ganges and Pearl River plumes [37�,42–48].

Geographical variations
Unlike continental shelves in temperate (23.5–508) and

high-latitude (>508) regions where seas typically act as

sinks for atmospheric CO2 [13��], the estuaries in these

regions mostly release CO2 to the atmosphere (Figure 2).

This contrast reflects the fact that open oceanic waters are

generally undersaturated in CO2 in temperate and high-

latitude regions [49], and, the continental shelves are

highly productive, promoting the open-ocean CO2 under-

saturation. Incoming river water to the estuaries is usually

highly supersaturated with respect to CO2, loaded with

terrestrial organic matter that regenerates in the estuaries,

and exhibits a high turbidity that impedes productivity.

Therefore, CO2 remains supersaturated.

In tropical regions, open ocean waters are typically over-

saturated with CO2, and nonupwelling continental shelves

are normally oligotrophic; they, therefore, exhibit low

productivity and relatively high pCO2. However, these

regions receive up to 60% of the global riverine organic

carbon inputs [50–52], promoting the supersaturation on

the continental shelves [13��]. Naturally, all of the above

factors make tropical estuaries generally sources of CO2 to

the atmosphere [53�]. In summary, estuaries in all three

latitude bands are generally sources of CO2. Interestingly,
www.sciencedirect.com 
water-to-air fluxes do not significantly vary geographically,

and all fall around 24 mol C/m2/y although the flux is

slightly lower at high latitudes (Figure 2).

Seasonal variations
Although relevant data vary greatly, most continental

shelves are generally sinks for CO2 during most of the

year, with the possible exception of summer (June–August

in the northern hemisphere) because the warming of

seawater thermodynamically increases pCO2 [13��]. Most

data reveal that, generally, the water in estuaries releases

CO2 in all seasons although the flux seems to be highest in

autumn (September–November; 73.2 � 93.4 mmol C/m2/

d) and lowest (53.4 � 65.1 mmol C/m2/d) in winter

(December–February; Figure 3). The numerical average
Current Opinion in Environmental Sustainability 2012, 4:179–185
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Figure 3
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Chen, unpublished data).
of the annual water-to-air flux of CO2 is 23.9 � 33.1 mol C/

m2/y, which yields a global estuarine flux of 0.26 Pg C/y

when the global estuarine surface area is taken to be

1.07 � 106 km2 [54]. Notably, this total flux is subject to

large uncertainty because few field expeditions cover the

entire tidal cycle. Further, measurements frequently do

not cover various wind mixing and stratification conditions

of the water column. Contribution from coastal vegetation

is also poorly studied [26,55]. Finally, the global average

flux is likely to be an overestimate because upper estuaries

have high fluxes but have a much smaller surface area than

the lower estuaries, which have a low flux. By way of

comparison, Chen and Borges [13��] provided a global

estuarine CO2 emission value of up to 0.5 Pg C/y, Laruelle

et al. [14��] gave 0.27 � 0.23 Pg C/y, and Cai [55] gave

0.25 � 0.25 Pg C/y. Importantly, the IPCC [18] report

provided a riverine input of 0.8 Pg C/y to the oceans,

but at least a third of this is released to the atmosphere

in estuaries.

Conclusions
Rivers are the major conduits for transporting terrestrial

material toward the oceans, but not all transported

material reaches the oceans. Upper estuaries are found

usually to be highly supersaturated in terms of pCO2,

while mid estuaries are less so and lower estuaries are the
Current Opinion in Environmental Sustainability 2012, 4:179–185 
least supersaturated. They together release some of the

carbon that is transported by the rivers to the atmosphere.

However, large river plumes are often found to be sinks of

CO2 because of a high rate of photosynthesis.

Predicting the future trend is not easy because the driving

forces and feedback systems in estuaries are complex, as

they are subject to intense anthropogenic disturbance.

Increasing loadings of inorganic nutrients for biological

production in estuaries reduces pCO2 especially in the

lower estuaries where suspended particles have suffi-

ciently settled to allow enough light for photosynthesis.

The construction of dams around the world will also

reduce the downstream transport of sediments, increasing

the transparency of water but reducing the degree of

respiration by reducing the POC load [56–58]. Addition-

ally, the atmospheric CO2 will continue to rise. Con-

sequently, those lower estuaries that are now small

sources of atmospheric carbon will probably become

net sinks of CO2 in the future. Considering only the

increase in nutrient delivery by rivers, Borges [59��]
has suggested that by 2100, the negative feedback

(reduction of atmospheric CO2) will be of the order of

magnitude of the present day sink of atmospheric CO2 by

the coastal oceans. Added to this effect is a small negative

feedback that is associated with increased limestone
www.sciencedirect.com
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weathering [58] and the dissolution of CaCO3 in sedi-

ments that is caused by ocean acidification [59��]. How-

ever, increased loadings of detrital organic matter, mostly

due to agricultural practices, will increase respiration rates

and the production of CO2. Consequently, most upper

and mid estuaries are likely to remain as sources of CO2

for at least the next few centuries. Increased river basin

nutrient management procedures could lead to a

decreased nutrient and DOC loads to the estuaries

[60,61]. Yet, complicated feedback that is related to

changes such as land use patterns and hydrological cycles

remains to be investigated [62].
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