台湾地区湖泊水库沉积速率初步探讨*

陈镇东 罗建育 林志明 陈佳奇

(高雄中山大学海洋地质及化学研究所,高雄 80424)

提要 对 1989—1991 年期间,在台湾地区采集的5 个湖泊的沉积物岩芯和22 个湖泊水库的表层沉积物,进行了沉积物超量²¹⁰Pb 活性的分析,以探讨其沉积速率。其中,小鬼湖沉积物岩芯取部分样品进行¹⁴C 定年,以与²¹⁰Pb 所得结果比较。结果表明,数千年来,台湾高山湖泊、次高山湖泊的沉积速率相当稳定,除万里池外,大多介于 0.06—0.16cm / a 之间。火山湖的²¹⁰Pb 活性较一般湖泊高,这是由于火山湖当地安山岩及地下水释出较多的²¹⁰Pb 所致,但这并不意味其沉积速率慢。所以应用²¹⁰Pb 对火山湖沉积物定年时,须作特别修正。平地湖泊目前沉积速率,除了大埔水库高达 6.42cm / a 外,大多介于 0.5—3.2cm / a 之间,比高山湖泊的沉积速率高约 10—20 倍。另外,由水库淤沙资料显示¹³,历年平均沉积速率都比目前的沉积速率快数倍,其中以石门、白河、乌山头、阿公店 4 个水库的平均沉积速率较快。

关键词 210Pb 沉积速率 湖泊 水库

²¹⁰Pb 定年法已于 70 年代初期,成功地运用于湖泊及近海地区沉积速率的研究 (Koide et al.,1972; Krishnaswami et al., 1971)。台湾地区有关湖泊水库沉积速率的研究 很少(林志明等,1992)²⁾。所以,作者于 1989—1991 年间采集了台湾地区较重要的湖库沉积物岩芯和表层沉积物,尝试以岩芯的²¹⁰Pb 垂直分布,及表层沉积物的²¹⁰Pb 活性,获取各湖泊水库的沉积速率,并与实际的水库淤积速率比较。

1 研究区域概述

共采集了 5 个湖泊的沉积物岩芯与 22 个湖泊水库的表层沉积物。各湖泊水库名称、位置、标高、蓄水面积及主要水源,详见表 1 及图 1。平地湖泊和水库地层,多属于新第三纪碎屑性沉积岩,如砂岩、页岩,仅梦幻湖与兰屿天池为更新世安山岩,龙銮潭附近则有更新世石灰岩出露。梦幻湖位于七星山上,其附近地区有许多温泉、喷气孔及硫气孔,显示地下目前仍有岩浆活动。高山湖则多位于第三纪变质岩区,如千枚岩、板岩等,仅莲花池及小鬼湖位于古生代晚期至中生代的片岩区,其附近就有结晶石灰岩出露(何春荪,

^{*·}行政院国家科学委员会资助项目,NSC-82-0209-M-110-041号;环保署及垦丁国家公园管理处资助. 陈镇东, 男,出生于1949年4月22日,教授.

本研究得到钟玉嘉、刘聪桂教授及王冰洁、万政康、徐慧倩、黄明祥协助, 谨志谢忱。

¹⁾ 许文志,1991,台湾省政府所属水库淤积泥沙清除计划书,台湾省建设厅,1-22,

²⁾ 陈佳奇,1990,垦丁国家公园内南仁湖的地球化学,国立中山大学海洋地质研究所硕士论文,1—98.

收稿日期: 1994年10月13日, 接受日期: 1997年5月4日,

1986).

2 研究方法

岩芯上部 20cm 以内, 以 2cm 间隔取一样品; 20cm 以下则每隔 5—10cm取一样品。干燥后的样品, 经纯化成为硫酸铅形式, 再利用 TENNELEC型LB 5100-2800-II型气流式α/β计数器侦测 210 Pb 活性 (Koide et al., 1972; Chung et al., 1983)。初步得到的全量210 Pb 活性, 需再扣除沉积物颗粒本身所含 226 Ra 蜕变产生的再生性210 Pb, 才是超量210 Pb 活性。它代表颗粒沉降过程中,从水中吸附的210 Pb, 如此才能用以估算沉积速率。

采用岩芯²¹⁰Pb 法、表层²¹⁰Pb 法与水库淤沙记录等 3 种方法,估算湖泊水库的沉积速率。岩芯²¹⁰Pb 法选用CIC(constant initial concentration,稳定初始通量)模式计算。表层²¹⁰Pb 法对于

图 1 台湾地区湖泊沉积物采样点

Fig. 1 Sampling sites of lake sediments in Taiwan

一些岩芯采集较困难的湖泊,有很大的用处。将当地的²¹⁰Pb 通量除以表层沉积物的超量²¹⁰Pb 活性,即可得累积速率 [g / (cm·a)],而累积速率再除以一般沉积物的统体密度(1.5g / cm),则是沉积速率(cm / a)。另外,依据台湾各水库的淤沙记录¹⁾及由航照图判定的水库蓄水面积,即可得水库的沉积速率。

3 结果与讨论

3.1 岩芯²¹⁰Pb 法测得的湖泊沉积速率

由梦幻湖、天銮池和莲花池 3 个湖泊沉积物的超量²¹⁰Pb 活性剖面 (图 2),明显地看出表层²¹⁰Pb 活性最高,逐渐向下递减。梦幻湖岩芯的表层超量²¹⁰Pb 活性达 68.74dpm/g。由²¹⁰Pb 活性分布来看,其沉积过程相当稳定,沉积速率约为 0.045cm/a。但是,刘聪桂(1991)²¹曾在梦幻湖畔取得 4.5m 长的岩芯进行¹⁴C定年,得到的平均沉积速率是 0.08cm/a,较²¹⁰Pb 法所得的值高约 78%。天銮池岩芯表层超量²¹⁰Pb 活性为 17.92dpm/g,向下递减,在深度 12cm 以下即趋于零,其沉积速率约为 0.10cm/a。莲花池表层²¹⁰Pb 活性为 12.33dpm/g,随深度增加而逐渐递减,在 9—15cm 处呈稳定,但深度 15cm 以下又是另一段稳定值,其沉积速率约为 0.12cm / a。在 9—15cm 处的沉积物可能受到扰动,导致其²¹⁰Pb 活性上下一致。

小鬼湖呈长条状,乃是河道淤积造成的,2支岩芯(A和B)均采自湖中央。岩芯A的

¹⁾ 许文志,1991,台湾省政府所属水库淤积泥沙清除计划书,台湾省建设厅,1-22.

²⁾ 刘总桂,1990,梦幻湖及附近洼地的剖面分析及定年研究,内政部营建署阳明山国家公园管理处,1-34.

表1 台湾地区各湖泊水库的位置、标高、蓄水面积及主要水源

Tab.1 The locations, elevations, areas and water sources of lakes and reservoirs in Taiwan

地 名	湖泊、水库名称	东 经	北 纬	标高(m)	蓄水面积(ha)	主要水源	
台北市	梦幻湖"	121° 33′ 00″	25° 10′ 05″	870	0.3	雨力	
台北市	内湖	121° 35′ 37″	25° 05′ 05″	10	9.2	雨 力	
台北县	碧潭	121° 31′ 34″	25° 57′ 30″	170	81	新店選	
基隆市	情人湖	121° 42′ 00″	25° 09′ 37″	170	1	雨 才	
桃园县	石门水库	121° 13′ 50″	24° 48′ 50″	240	800	大 汉 没	
新竹县	宝山水库	121° 02′ 15″	24° 44′ 50″	140	60.2	選 才	
新竹县	大埔水库	120° 58′ 20″	24° 40′ 30″	60	137	峨 眉 谔	
苗粟县	永和山水库	120° 55′ 00″	24° 39′ 40″	70	165	溪水	
苗粟县	明德水库	120° 53′ 30″	24° 35′ 40″	60	170	老田寮谬	
南投县	天銮池1.2)	121° 16′ 38″	24° 12′ 30″	2900	0.03	雨力	
南投县	日月潭	120° 54′ 00″	23° 52′ 00″	740	1160	浊水等	
南投县	屯鹿池 ²⁾	120° 15′ 10″	23° 53′ 30″	2830	0.4	雨	
嘉义县	兰 潭	120° 28′ 20″	23° 23′ 10″	80	70	八掌領	
台南县	白河水库	120° 27′ 55″	23° 21′ 35″	190	197	急水資	
台南县	乌山头水库	120° 21′ 55″	23° 11′ 45″	50	950	曾文语	
高雄市	澄清湖	120° 20′ 35″	22° 39′ 40″	20	103	高屏質	
高雄县	南横天池2)	120° 54′ 25″	23° 16′ 45″	2300	0.1	雨った	
高雄县	大鬼湖2)	120° 51′ 15″	22° 52′ 15″	2200	11	雨が	
高雄县	阿公店水库	120° 20′ 10″	22° 48′ 50″	40	290	阿公店領	
屏东县	南仁湖	120° 51′ 27″	22° 05′ 15″ ·	320	150	雨った	
屏东县	龙銮漂 ⁽⁾	120° 44′ 00″	21° 58′ 45″	10	150	保力	
屏东县	小鬼湖1,2)	120° 53′ 10″	22° 40′ 00″	2040	5.13	雨 ス	
花莲县	莲花池1)	121° 29′ 20″	24° 13′ 00″	1100	1	雨のス	
花莲县	鲤鱼潭	121° 30′ 10″	23° 55′ 40″	140	104	木瓜罩	
花莲县	白石池2)	121° 16′ 00″	23° 55′ 40″	2750	0.35	雨った	
花莲县	万里池 ²⁾	121° 15′ 50″	23° 54′ 10″	2780	0.8	雨 ス	
台东县	兰屿天池	121° 34′ 45″	22° 00′ 56″	340	0.3	雨った	

¹⁾ 代表采取沉积物岩芯的湖泊; 2) 代表高山湖泊。

表层沉积物受到扰动影响,0—11cm 沉积物超量²¹⁰Pb 活性约为 8—10dpm / g,而在 17cm 以下的超量²¹⁰Pb 活性趋近于零,其沉积速率约为 0.09cm / a。岩芯 B 长 144cm,其表层超量²¹⁰Pb 活性值比岩芯 A 稍小,但向下递减很快,于 6cm 深以下即趋向于零,计算得到的沉积速率是 0.075cm / a。故 A, B 岩芯的沉积速率平均为 0.083cm / a。另外,分别从岩芯 B 深度 65—70cm 及 125—130cm 处取沉积物进行¹⁴C 定年,两者年龄分别是 1610 ± 60a 及 2390 ± 60a(图 3),所以平均沉积速率约为 0.05cm / a,较由²¹⁰Pb 法所得的值稍低。由于沉积物受到湖底生物或水流扰动的混合影响,使得本文所用岩芯²¹⁰Pb 法(假设沉积物未受扰动)计算所得沉积速率会比实际的高,故所得结果应是当地的最大沉积速率。龙銮潭的 5 支岩芯 A—E 的超量²¹⁰Pb 活性分布(图 4)显示,表层²¹⁰Pb 活性约为 2.03—5.08dpm / g,往

Fig. 2 Distribution patterns of excess ²¹⁰ Pb activity of the cores from Menghuan Lake (a),
Tianluan Pond (b) and Lianhua Pond (c)
虚线代表超量²¹⁰Pb 趋于稳定后的平均值,接近于 0.

深处则活性渐减,但每支岩芯的超量²¹⁰Pb活性垂直变化很小,依活性大小可分成两群。活性较低的一群(A,B,E)是近湖缘的岩芯。这些靠近湖缘的采样点因为水浅,受到生物或人为因素扰动的频率较多,以致²¹⁰Pb活性低于靠近湖心的岩芯(C和D)。龙銮潭附近尽是大片农田,每当秋收后,吸引大批候鸟来此栖息觅食。并且,常有居民捕捞潭中鱼虾,加上水浅,使沉积物更易受到扰动。这些岩芯部分可能是以往潭底农田土壤,所以²¹⁰Pb活性很低,难以用来计算沉积速率。若以岩芯 D估算,龙銮潭沉积速率约为 1.41cm / a。

小鬼湖、天銮池均是海拔 2 000m以上的高山湖, 莲花池属于次高山湖, 三者的沉积速率大致为 0.075—0.12cm / a, 可代表台湾高山湖的沉积速率。

3.2 表层沉积物法测得的湖泊沉积速率

Robbins 等 (1975)采用岩芯²¹⁰Pb 法及表层²¹⁰Pb 法计算美国密西根湖及华盛顿州数个湖泊的沉积速率, 两种方法得到的沉积速率的比值多介于 0.8—2 之间, 且通常表层²¹⁰Pb 法所得的结果比岩芯²¹⁰Pb 法稍高。但在休伦湖及挪威所得的结果, 两者比值却高达 3—4(Benoit et al., 1988; Binford et al., 1986; Li et al., 1985), 差异可能相当大。

湖泊表层沉积物的超量²¹⁰Pb 活性愈大,沉积速率则愈低。台湾一般高山湖泊的超量²¹⁰Pb 活性都较平地湖泊高,其沉积速率较低。如天銮池、南横天池、大鬼湖和小鬼湖等,超量²¹⁰Pb 活性达 10—23dpm / g,沉积速率仅为 0.06—0.16cm / a。但位于中央山脉中段的 3个小湖(白石池、万里池和屯鹿池)由于水浅,湖面积也小,极易受动物扰动,使下部低²¹⁰Pb 活性的较老沉积物上移,与表层沉积物混合,所以表层²¹⁰Pb 活性较低。由表层²¹⁰Pb 法及岩

210 Pb 活性分布

Fig. 3 The distributions of excess ²¹⁰Pb activity of core A(○) and B(●) from Xiaogui Lake

芯²¹⁰Pb 法所得的沉积速率比较结果为: 天銮池为 0.07 和 0.10cm / a; 莲花池为 0.10 和 0.12cm / a; 小鬼湖为 0.15 和

图 4 龙銮潭 5 支岩芯 A(○),B(♠),C(▽), D(▼),E(□)的超量²¹⁰Pb 活性分布 [根据岩芯 D(▼)计算的沉积速率为 1.41cm/a]

Fig. 4 Distribution patterns of excess ²¹⁰Pb activity of coreA(○), B(●), C(▽), D(▼) and E(□) from Longluan Lake (the sedimentation rate is 1.41cm/a according to analysis of core D)

0.083cm / a。 两种方法所得结果相差不大,显示表层²¹⁰Pb 法适用于台湾湖泊的研究。

另外, 梦幻湖及兰屿天池不是高山湖泊, 却有很高的超量²¹⁰Pb。此 2 湖位于安山岩质火山区, 除了安山岩本身含较多的放射源, 可以提供较多的²¹⁰Pb 外, 地下热液中也含有高量的²²²Rn 气体, 当它们沿着地壳裂隙上升时, 蜕变形成²¹⁰Pb, 进入附近水体, 因此增加了湖泊沉积物的²¹⁰Pb 浓度。关于这一类的²¹⁰Pb 来源, 曾在许多地方发现, 如 Krishnaswami 等 (1982)发现, 美国东北部的康乃狄格州地下水中的²¹⁰Pb, 和它的母元素²²²Rn 及²²⁶Ra 活性甚高; Holtzman (1964)曾量出美国伊利诺州地下水有高含量的²¹⁰Pb 及²²⁶Ra; Norton 等 (1985)亦发现落矶山的 3 个湖泊沉积物所含²¹⁰Pb 的主要来源是地下水中的²²²Rn。所以, 梦幻湖与兰屿天池表层沉积物中较高的²¹⁰Pb, 部分是由地下水提供的, 不能单单视大气为

唯一来源。兰屿天池的沉积速率为 0.06cm/a, 梦幻湖为 0.02cm/a, 后者较岩芯法所得 0.045cm/a 略低。在安山岩区这种特殊环境, 当地实际²¹⁰Pb 通量比大气²¹⁰Pb 通量大许多, 所以表层法所得的沉积速率要比实际沉积速率低。

通常高山湖因为雨量较丰沛,集水区植生较好,土壤免受雨水直接冲刷,所以进入湖中的微粒较少,使得沉积物中的²¹⁰Pb 浓度相对提高。平地湖泊水库,因大多有河川注人,集水面积也较大,以及上游区人类伐木、坡地开发、开垦道路等活动,使得大量土壤流失。这些物质终被冲刷至下游的河床、湖泊、水库中堆积,湖中的²¹⁰Pb 因此被大量的沉积物所稀释。这些平地湖泊水库的表层²¹⁰Pb 活性多介于 0.40—3.00dpm / g,除大埔水库沉积速率高达 6.42cm / a,及鲤鱼潭、澄清湖有较低的沉积速率 (0.07—0.24cm / a)外,一般沉积速率介于 0.50—3.21cm / a 范围内,其中水库的沉积速率普遍较快。台湾平地湖泊水库的沉积速率比高山湖快约 10—20 倍。

3.3 由水库淤沙量计算的历年平均沉积速率

根据统计,台湾水库集水区单位面积土壤每年的冲蚀厚度最高为 1.8mm,最低为 0.04mm,平均为 0.73mm,比日本部分水库的统计数字 0.30mm 高出 2 倍以上。而日本水库的单位冲蚀深度为世界平均值的 4—8 倍,台湾地区水库冲蚀问题与淤沙的严重性由此可见(徐铁良,1989)。表 2 为台湾一些水库的淤沙资料,其中"平均沉积速率"代表水库开始启用至现在的历年平均速率;而"目前沉积速率"则由表层²¹⁰Pb 法得到。假设:(1)水库的蓄水面积从水库启用至今变化很小;(2)水库的淤积速率不随时间改变;(3)沉积物分布面积相当于水库蓄水面积,而且各处淤沙厚度均匀。

	启用	使用	原有	总淤	蓄水	淤沙	原来	总淤沙	平均沉	目前沉
水库名称	时间	年数	容量	沙量	面积	比率	水深	厚 度	积速率	积速率
	(年)		(10 ⁶ m ³)	(10^6m^3)	(10^4m^2)	(%)	(m)	(m)	(cm/a)	(cm/a)
石门水库	1964	27	309.12	49.14	800	15.90	38.64	6.14	22.75	1.03
宝山水库	1985	6	5.47	0.17	60	3.11	9.09	0.28	4.71	3.21
大埔水库	1960	31	7.78	3.48	137	44.73	5.68	2.54	8.19	6.42
永和山水库	1984	7	29.58	0.74	165	2.50	17.93	0.45	6.41	0.57
明德水库	1970	21	17.70	3.45	170	19.49	10,41	2.03	9.66	1.98
日月潭	1934	57	171.00	32.94	1160	19.26	14.70	2.84	4.98	1.27
兰 潭	1973	18	9.79	0.31	70	3.17	13.99	0.44	2.46	0.50
白河水库	1965	26	25.09	8.71	197	34.72	12.74	4,42	17.01	1.07
乌山头水库	1930	61	154.19	70.40	950	45.66	16.23	7.41	12.15	0.44
阿公店水库	1953	38	20.50	14.55	290	70.98	7.07	5.02	13.20	0.98
龙銮潭	1958	33	3.63	0.09	150	2.48	2.42	0.06	0.18	0.47

表2 台湾部分水库基本资料1)及沉积速率

Tab.2 The basic data and sedimentation rates of some reservoirs in Taiwan

1)许文志,1991,台湾省政府所属水库淤积泥沙清除计划书,台湾省建设厅,1-22.

水库的目前沉积速率大多比历年平均小。淤沙较严重的水库有大埔、白河、乌山头、阿公店水库等。尤其是阿公店水库,在启用至今38年期间,其淤沙量已超过水库原有容量的70%,水库的灌溉给水效用已经完全丧失,防洪效用也锐减。另外,淤积最快者,依次为石门、乌山头、阿公店、白河4个水库,其速率皆在12cm/a以上。

石门水库是台湾北部最重要的水利工程,平均水深达38.64m,虽然平均沉积速率高达

22.75cm/a, 也居首位, 但目前的沉积速率已降至 1.03cm/a。白河水库、乌山头水库及阿公店水库, 其平均沉积速率很高, 分别是 17.01cm/a, 12.15cm/a, 13.20cm/a(表 2)。由于这些水库位于胶结松散的上新世一更新世泥岩层上, 岩层的胶结甚差, 透水性很低, 且台湾南部的雨季集中在 7—9月, 雨量很大, 每当雨季来临, 泥岩饱和水无法排出, 雨水沿裂隙渗入地层, 层间的摩擦力降低, 遂使表面泥岩呈片状顺坡下滑造成泥流。此外, 因为泥岩是古代海洋沉积物, 尚保存大量盐份, 致使植物也难以生长。泥岩缺乏繁茂植物的保护, 直接受到烈日曝晒及大雨冲击, 风化侵蚀剧烈, 如此恶性循环, 所以此区域内常见典型的"劣地"景观。这 3 个水库处在恶劣的自然条件下, 同时在 1960—1970 年间沿岸观光道路及游乐场大肆兴建, 破坏水土保持, 更加速水库淤积。 所幸近年来进行护坡与水土保持工作,全力取缔集水区内土地滥垦及非法建筑, 淤积速率才明显减缓。目前白河、乌山头及阿公店水库的沉积速率已分别降低为 1.07cm/a, 0.44cm/a, 和 0.98cm/a(表 2)。

宝山和大埔水库较浅,其平均沉积速率不高,分别是 $4.71\,\mathrm{cm}$ / a 与 $8.19\,\mathrm{cm}$ / a,但目前的沉积速率分别是 $3.21\,\mathrm{cm}$ / a 与 $6.42\,\mathrm{cm}$ / a,比其它水库高许多。永和山、明德、日月潭和兰潭历年平均沉积速率分别是 6.41, 9.66, 4.98 和 $2.46\,\mathrm{cm}$ / a,也较目前沉积速率 0.57,1.98,1.27 和 $0.50\,\mathrm{cm}$ / a 高约 3-10 倍。龙銮潭目前沉积速率 $(0.47\,\mathrm{cm}$ / a)却反而比历年平均速率 $(0.18\,\mathrm{cm}$ / a)高,这可能是表层沉积物受到混合影响,使前者的估算偏高。

4 结语

本文采用的3种计算沉积速率方法,其代表的意义不尽相同。利用表层²¹⁰Pb法所得者,仅代表目前(数年间)湖库的沉积速率;由岩芯²¹⁰Pb法所得者,则代表近百年来的平均沉积速率;但由水库淤沙量记录推算的,则代表历年来(水库启用到现在)的平均沉积速率。

台湾高山湖近百年来的沉积速率和目前相似,大多介于 0.06—0.16cm / a 之间,而且不论以岩芯²¹⁰Pb 法、表层²¹⁰Pb 法或¹⁴C 定年所获得的小鬼湖沉积速率都相当接近,显示小鬼湖数千年来的沉积速率颇稳定。平地湖泊水库目前的沉积速率,除了大埔水库为6.42cm / a 较高外,大多介于 0.50—3.21cm / a 之间,约为高山湖泊沉积速率的 10—20 倍。梦幻湖和兰屿天池的表层沉积物的²¹⁰Pb 活性相当高,并非因它们的沉积速率很慢,而是由于它们位于安山岩区,附近的火山物质即能提供较多的²¹⁰Pb。

水库历年来平均沉积速率大多都比目前的沉积速率高,这可能是水库启用初期,环境条件急速改变,其淤积速率较快,而后逐渐减缓的缘故。平均沉积速率较大的水库,依次是石门、白河、阿公店、乌山头水库,其值介于12—23cm/a,但目前的沉积速率已降至0.44—1.07cm/a。

参 考 文 献

何春荪,1986,台湾地质概论——台湾地质图说明书,经济部出版(台北),1—164。

林志明、陈镇东,1992,大自然,37:114-117。

徐铁良,1989,地质与工程,科技图书公司(台北),326-328。

Benoit, B. and Hemond, H. F., 1988, Limnol. Oceanogr., 33:299-304.

Binford, M. W. and Brenner, M., 1986, Limnol. Oceanogr., 31:584-595.

Chung, Y. et al., 1983, Earth and Planet. Sci. Lett., 65:393-405.

Koide, M. et al., 1972, Earth and Planet. Sci. Lett., 14:442—446.

Krishnaswami, S. et al., 1971, Earth and Planet. Sci. Lett., 11:407—414.

Li, W. Q. et al., 1985, Marine Geology, 68:187—204.

Robbins, J. A. and Edgington, D. N., 1975 Geochim. Cosmochim. Acta, 39:285—304.

SEDIMENTATION RATES OF LAKES AND RESERVOIRS IN TAIWAN

Chen-Tung Arthur Chen, Jiann-Yuh Lou, Jyh-Min Lin, Chia-Chi Chen (Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan 80424)

Abstract The ²¹⁰Pb activities were measured in sediment cores from 5 lakes, and in surface sediments from 22 lakes and reservoirs in Taiwan during 1989—1991, in order to calculate the sedimentation rates. Samples from Xiaogui Lake were also dated by ¹⁴C.

The results show that the sedimentation rates of alpine and subalpine lakes were fairly constant during the past several thousand years, mostly ranging between 0.06 and 0.16cm / a. Lakes in the andesite area, such as Menghuan Lake and Lanyu-ten Pond, have higher ²¹⁰Pb activities than those of non-volcanic ones. This is not because of the lower sedimentation rates, but is due to the extra ²¹⁰Pb input from andesite and ground-water nearby. The current sedimentation rates of low-land lakes are 10—20 folds higher than those of alpine and subalpine lakes, ranging between 0.5 and 3.2cm / a, except for Dapu Reservoir (6.42cm / a).

In addition, the thickness of sediment and the deposition rate in a reservoir can be estimated from the siltation amount. The average sedimentation rates of 11 reservoirs since their constructions are in the ranges of 0.18—22.75cm/a, and are several times higher than the present rates (0.44—6.42cm/a), with Shimen, Baihe, Wushantou and Akondain reservoirs being the highest.

Key words 210Pb Sedimentation rate Lake Reservoir