Comparison of seawater carbonate parameters in the East China Sea and the Sea of Japan

Shu-Lun Wang* and Chen-Tung Arthur Chen*

Abstract: During the Kuroshio Edge Exchange Processes-Marginal Sea Studies expedition (KEEP-MASS) in the summer of 1992, three parameters of the carbonate system were measured: pH, total alkalinity (TA) and total carbon dioxide (TCO₂). All measurements were made by two independent methods. The pH values based on the NIST phosphate buffers were lower than those based on the Tris buffer by 0.004±0.014 pH unit (n=210). The TA determined from the potentiometric Gran titration was about 6.5±5.0 μmol/kg (n=154) lower than that determined by the single-point indicator method. The TCO₂ determined from the coulometry method was about 17.8±6.1 μmol/kg (n=139) lower than that determined by the potentiometric Gran titration. Typical distributions of these parameters in the East China Sea and the Sea of Japan are presented.

1. Introduction

Recently, the fate of fossil fuel CO₂ and the carbon cycle in the ocean have promoted much interest in the study of carbonate chemistry in the oceans (Chen and Drake, 1986; Chen, 1993). The carbonate system can be characterized by measuring two of the four parameters, pH, TA (total alkalinity), TCO₂ (total carbon dioxide) and pCO₂. The other parameters can then be calculated using the thermodynamic constants. However, when the measured values are compared with the calculated values, discordant results are often found (Brockecker and Takahashi, 1987; Brading and Brewer, 1988; Millero et al., 1993a).

The rate of increase of TCO₂ in the surface ocean is about 1 μmol/kg/yr. In order to detect such a small change and to assure the internal consistency in the CO₂ system, it is necessary to make reliable and precise measurements of the parameters. The purpose of this article is to present the intercomparison results of 3 carbonate parameters during the Kuroshio Edge Exchange Processes-Marginal Sea Studies (KEEP-MASS) expedition (Chen, 1992).

2. Method

In 1992, a multinational, multidisciplinary study of the West Philippine Sea (WPS), the East China Sea (ECS) and the Sea of Japan, called the KEEP-MASS, was conducted aboard the Russian R/V Academic Alexander Vinogradov. The ship departed Kaohsiung, Taiwan on 10 July, and returned to Vladivostok on 5 August. During the expedition 71 hydrographic stations were occupied: 11 in the WPS; 49 in the ECS and 11 in the Sea of Japan. The pH, TA and TCO₂ were measured as follows:

We used the NIST (National Institute of Standards and Technology, U.S.A.) 4.006 and 7.415 phosphate buffers to calibrate the Radiometer GK 2401C combination electrode at 25°C. The reproducibility of the pH measurements was better than ±0.001 units for replicate samples. All measurements were performed within 30 minutes of sampling. The electrode drift (assumed to be linear) was determined at approximately 10 day intervals. The drift was approximately 0.0018 unit/day and the correction was made to the measured values. Altogether 534 samples were measured. Independent pH measurements on 210 samples were made by a Russian group using Tris (2-amino-2-hydroxymethyl-1,3-propanediol) seawater buffer to calibrate the glass and
reference electrodes (Chen et al., 1992). The composition of the artificial seawater buffer was the same as used by Miller (1986). The reproducibility of the pH measurements was ±0.009 units for replicate samples.

We determined the alkalinity of 373 samples by the Gran titration at 25±0.05°C with a PC-controlled titration cell (Chen and Wang, 1993). These measurements have a precision of ±0.05% and were performed within 12 hours of sampling. The accuracy of this method shown in Huang and Chen (1995) is ±3 μmol/kg. The Russian team measured 194 TA samples using the single-point indicator method following Brucovich’s procedure (Ivanenkov and Lyakhin, 1978). The end-point was decided by eye with an accuracy of about ±5 μmol/kg at room temperature (Chen et al., 1992).

The TCO₃ measurements were conducted by us with two independent methods. The SOMMA (single-operator multiparameter metabolic analyzer) system first extracted CO₂ gas from acidified seawater and subsequently the CO₂ gas was measured by UIC (Coulometrics, Inc.) model 5011 coulometric detector (Dickson and Goey, 1991). One hundred fifty two samples were performed within 12 hours of sampling, and the precision was ±0.25%. The Centre for Ocean Climate Chemistry (COCC) in the Institute of Ocean Sciences, Canada, prepared the TCO₃ standard seawater for us as the running standard. The reference material could be traced to the standard material from the Scripps Institution of Oceanography, U.S.A. with the accuracy of about ±1 μmol/kg. Three hundred seventy three TCO₃ samples were also determined by the Gran titration at 25±0.05°C. The accuracy was ±4 μmol/kg.

3. Results and Discussion

When all the pH values based on the Tris buffer were changed to the NIST scale (Miller, 1986), these two sets of data agreed to within 0.004±0.014 pH unit based on 210 measurements (Table 1). The Russian data were a little higher than ours, but the agreement was much better than the combined precision of ±0.01 pH unit. A 1985 SCOR report stated that “the usual reproducibility of ocean pH measurements is not better than ±0.02 pH units”. The present results and the results of Byrne et al. (1988) and Chen (1994) clearly nullified that statement. Indeed these studies indicate that the usual reproducibility of ocean pH measurements is now about ±0.003 pH units.

Figure 1 shows the vertical profiles of θ, S and pH in the Sea of Japan. The vertical temperature gradient was very large in the surface water, about 20°C in a matter of 100m. The salinity was lower for surface water then gradually increased with depth. In the deep water the water was very homogeneous and had a salinity of about 34.07. The pH data showed a large decrease with depth in the surface water and a minimum was found at about 1800m.

The pH minimum is shown more clearly when our data from several stations are plotted with depth (Fig. 2). This minimum, an indication of the presence of older water, is shown even more dramatically when plotted vs. θ (Fig. 3). Chen et al. (1995a) also found an AOU maximum in the deep water, corresponding to the pH minimum. It should be pointed out that the magnitude of the pH signal was only 0.02 pH unit. High precision of the data is needed in order to detect it.

The comparison of TA data collected at the

| Table 1. Comparison of the carbonate parameters during the KEEP-MASS Expedition |
|---------------------------------|-----------------|-----------------|
| pH | TA | TCO₃ |
| ROC | NIST buffers | potentiometry | potentiometry, coulometry |
| Russia | Tris buffer | single-point | - |
| Δ | 0.004±0.014 | 6.5±5.0 | 17.8±6.1* |
| (Russia-ROC) | (Russia-ROC) | | |
| n | 210 | 154 | 139 |

#potentiometry-coulometry
same locations showed that our TA values were about $6.5 \pm 5.0 \, \mu \text{mol/kg (n=154)}$ lower than that determined by the single-point indicator method. The vertical profile of the normalized alkalinity ($NTA = TA \times 35 / S$) in the Sea of Japan shown in Fig. 4 indicates that both methods gave reliable results, but the single-point method was less precise. The NTA increases steadily with depth below 500m. In the whole water column the NTA values varied less than $40 \, \mu \text{mol/kg}$ in the Sea of Japan.

The NTA is an useful tool for studying the mixing processes on the shelf (Chen, 1985). The NTA data in the ECS are plotted vs. salinity in Fig. 5. In the shelf area, the NTA-S correlation falls into a linear trend with NTA shooting up at lower salinity, reflecting the alkalinity input of the river water (Chen et al., 1995b). The bottom water of shelf area in the northern ECS falls into a different trend which indicates a different water source. The Kuroshio has a very different correlation with salinity as compared to the ECS shelf water.

The TCO_3 determined from the coulometry method was about $17.8 \pm 6.1 \, \mu \text{mol/kg (n=139)}$ lower than that determined by the potentiometric Gran titration (Table 1), similar to that reported by Bradshaw and Brewer (1989). The vertical distributions of normalized total CO$_3$ ($NTCO_3 = TCO_3 \times 35 / S$) is shown in Fig. 6. The difference between these two methods has been attributed to the presence of unknown protolytes in seawater (Bradshaw and Brewer, 1988) but Miller et al. (1993b) suggested that the offset in the TCO_3 is due to deviations in the slope of the electrode from the Nernstian behavior. It suggests that the TCO_3 measured by the potentiometric method needs more attention vis-a-vis the condition of the electrode. Fig. 7 shows the $pH-NTCO_3$ correlation and clearly indicates the pH minimum but the quality of the $NTCO_3$ data is not sufficient.
Fig. 2. The vertical profiles of pH (25°C) below 300m in the Sea of Japan.

Fig. 4. The vertical profiles of NTA at station 10 (40°56'30"N, 133°01'20"E) in the Sea of Japan.

Fig. 3. The correlation of pH (25°C) with θ in the Sea of Japan.

Fig. 5. The NTA vs. S diagram in the East China Sea. Enclosed area with dotted line indicates the deep shelf water in the northern ECS.
Fig. 6. The vertical profiles of NTCO$_2$ at station 10 (40°55.3′ N, 133°01.2′ E) in the Sea of Japan.

Fig. 7. The correlation of pH (25°C) with NTCO$_2$ in the Sea of Japan.

to tell whether there is a NTCO$_2$ maximum.

4. Conclusion
The pH measurements based on the NIST and Tris buffers agreed to within 0.004±0.014 pH unit during the KEEP-MASS expedition. The TA measurements showed that both of the potentiometric Gran titration and the single point method could give reliable results but the potentiometric Gran titration is more precise. The TCO$_3$ values determined by the potentiometric Gran titration apparently had a systematic shift compared with those determined by the coulometry method.

Acknowledgements
This research was supported by the National Science Council (NSC 85–2611–M–110–006 K2). We thank Alexander S. Bychkov of the Pacific Oceanological Institute, Russia for assistance at sea. An anonymous reviewer provided constructive criticisms.

References

Dickson A. and C. Goyet (eds) (1991): DOE Hand-

Received December 25, 1995

Accepted May 31, 1996