Variations in oxygen, nutrient and carbonate fluxes of the Kuroshio Current

Extrait de *La mer* (Bulletin de la Société franco-japonaise d'océanographie)
Tome 33, N° 3 Aôut 1995
Variations in oxygen, nutrient and carbonate fluxes of the Kuroshio Current

C. T. A. CHEN**, C. T. LIU*** and S. C. PAI***

Abstract: Measured concentrations of dissolved oxygen (DO), phosphate (PO₄), nitrate (NO₃), silicate (SiO₂), total alkalinity (TA) and calculated total CO₂ (TCO₂) in a section (WOCE PR 20 line) off southeast Taiwan across the Kuroshio current have been combined with the geostrophic velocity to estimate the net northward transports of oxygen, nutrients and carbonates. During the four cruises of R/V Ocean Researcher I: CHIPS-1 (May 1985); OR 257 (Oct. 1990); OR 287 (June 1991) and OR 316 (May 1992) the net northward volume transports across the 121°-130°E cross-section at 21°45'N were 20, 19, 50 and 39 Sv, respectively, above 1000 m. The Kuroshio could be clearly identified in May 1985 and June 1991 when the northward transports were 38 and 53 Sv, respectively, between 121 and 123°E. The segment between 123 and 130°E actually transported respectively, 18 and 3 Sv, southward. In Oct. 1990 and May 1992 the northward transports were more diffusive. The nutrient fluxes indicate a "nutrient stream" below the high velocity core of the Kuroshio current. For oxygen and carbonates, the distributions of mass have similar structures as the velocity field. For each cruise, the net along-stream transports of oxygen, phosphate, nitrate, silicate, alkalinity and total CO₂ between 121 and 130°E were as follows: May, 1985, 3971 (DO), 12 (PO₄), 194 (NO₃), 725 (SiO₂), 62156 (TA) and 63571 (TCO₂) kmol/s; Oct. 1990, 8585 (DO), 12 (PO₄), 196 (NO₃), 382 (SiO₂), 4525 (TA) and 41822 (TCO₂) kmol/s; June 1991, 487 (DO), 11 (PO₄), 164 (NO₃), 317 (SiO₂), 82002 (TA) and 71399 (TCO₂) kmol/s; and May, 1992, 6549 (DO), 21 (PO₄), 299 (NO₃), 474 (SiO₂), 89818 (TA) and 77531 (TCO₂) kmol/s. Northward fluxes were concentrated between 121 and 123°E and southward fluxes were more diffusive.

1. Introduction

The Kuroshio (Black Stream), as the western boundary current in the North Pacific Ocean, plays an important role in the meridional transports of mass, momentum, heat and fresh water. It is generally considered to be originated from the area southeast of Taiwan and east of the Bashi Strait as a continuation of the North Equatorial Current. The Kuroshio is characterized by its high speed, narrow width and great depth. It brings a large quantity of warm equatorial seawater while traveling northward along the east coast of Taiwan (NITANI, 1972; PAI, et al., 1987). Because of its characteristic high temperature and salinity, it has important impacts both on the local climate and the marine biological resources. Our interest is to quantitatively estimate the material fluxes carried by the Kuroshio.

Although there are numerous studies on Kuroshio volume transport (e.g. SVERDRUP et al., 1942; WYRTKI, 1961; NITANI, 1972; BINGHAM and TALLEY, 1991; CHEN et al., 1992; ICHIKAWA and BEARDSLEY, 1993), in fact none of these dealt with fluxes of chemical species. The first quantitative estimates of nutrient fluxes for the Pacific was as recent as 1983 (WUNSCH et al.). In the Atlantic, the first calculation of nutrient fluxes seems to be that of BREWER and DYRSSSEN (1987). They multiplied the average property values by the net meridional transport in each depth class to find the net flux across 24°N. BREWER et al. (1989), CSANADY (1990) and RINTOUL and WUNSCH (1991) further extended the flux calculation in the North Atlantic.

* Received May 17, 1995
** Institute of Marine Geology, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.
*** Institute of Oceanography, National Taiwan University, Taipei, Taiwan, R.O.C.
Ocean to include nutrients, oxygen and CO₂.

In the North Pacific, ROEMMICH (1989) studied the mass and nutrient fluxes in the southern California coastal waters and ROBBINS et al. (1994) covered the entire 24°N cross-section. We are not aware of similar work in the source region of Kuroshio except for our preliminary work based on data collected southeast of Taiwan in May, 1985 (CHEN et al., 1994).

In this note, we shall compare our 1985 data with additional data collected in 1990, 1991 and 1992. The fluxes, and the gross and net transports of dissolved oxygen, phosphate, nitrate, silicate, alkalinity and total CO₂ are presented.

2. Sources of data

The hydrographic data used in this note are cited from the data reports of CHIPS-1 (May 1985, LIU et al., 1986, 1987); OR 257 (Oct. 1990, CHEN et al., 1993a); OR 287 (Jun. 1991, LIU et al., 1991; CHEN et al., 1993b), and OR 316 (May 1992, PAI et al., 1992; CHEN et al., 1993c). As is shown in Fig. 1, there were 29 CTD stations between 121 and 130°E, but in general only 21 stations were chosen for chemical analysis. The analytical procedures in determining the dissolved oxygen, phosphate, nitrate, silicate, and total alkalinity were described in PAI et al. (1987) and CHEN et al. (1993a). Total CO₂ was calculated based on pH and TA data (CHEN, 1984).

3. Results and discussion

Currents

We calculated geostrophic velocity based on a level of no motion at 1000 db (Fig. 2a–d). The calculation based on a level of no motion at 2000 db resulted in a similar pattern above 1000 db and little or no motion (<5 cm/s) below 1000 db (Fig. 2e). These results agree with that obtained by NITANI (1972) and show various northward and southward bands. There were two rather strong northward current bands west of 123°E and weaker but much wider southward bands in May, 1985 (Fig. 2a). The total northward transport above 1000 m was 65 Sv and the total southward transport was 45 Sv, yielding a net northward flow of 20 Sv (Table 1).

It should be pointed out that the net northward transport was as much as 38 Sv between

![Fig. 1. Study area and station locations.](image-url)
Fig. 2. Geostrophic velocity at the section near 21°45′N for (a) CHIPS 1, (b) OR 257, (c) OR 287 and (d) OR 316 cruises based on a level of no motion at 1000 dB; and for (e) OR 316 based on a level of no motion at 2000 dB. Contours are in centimeter per second and the positive sign indicates northward flow.
Fig. 2. (Continued)
121 and 123°E (Table 1), which reflects the strong influence of the Kuroshio. The net flow was southward (18 Sv) between 123 and 130°E. Again we discuss only the flow above 1000 m and do not consider the deep southward flow beneath the Kuroshio (Chen, 1992; Nakano et al., 1994).

The currents in Oct. 1990 were relatively weak and variable with no dominating bands. The Kuroshio could not be easily identified (Fig. 2b). The northward flow was 49 Sv and the southward flow was 30 Sv, resulting in a net northward flow of 19 Sv. The net northward transport was 15 Sv between 121 and 123°E. The currents between 123 and 130°E contributed 4 Sv to the northward transport (Table 1).

The Kuroshio was rather strong in June, 1991 with a dominating northward flowing current band between 121 and 123°E (Fig. 2c). The northward flow totaled 78 Sv. The net northward flow was as much as 50 Sv after subtracting the southward flow of 28 Sv. Most of the northward transport occurred between 121 and

| Table 1. Volume transports (Sv) at 21°45'N west of 130°E during CHIPS-1, OR 257, 287 and 316 cruises |
|-----------------|-------|-------|-------|-------|
| 121-130°E | | | | |
| Northward | 65 | 49 | 78 | 50 |
| Southward | -45 | -30 | -28 | -11 |
| Net | 20 | 19 | 50 | 39 |
| 121-123°E | | | | |
| Northward | 40 | 18 | 56 | 14 |
| Southward | -2 | -3 | -3 | -2 |
| Net | 38 | 15 | 53 | 12 |

* 121-129°E

129°E (53 Sv, Table 1).

The Kuroshio was again weak in May, 1992 after the weak El Nino, but the total northward flow was still as much as 50 Sv. The southward flow was weak, totaling 11 Sv. The net northward flow was 39 Sv between 121 and 130°E and only 12 Sv between 121 and 123°E. This suggests that the northward flow was wide and not concentrated by the Kuroshio.
The fluxes of oxygen, nutrients and carbonates were calculated by multiplying geostrophic velocity by concentration. Integrating these data gives the total fluxes.

Oxygen

The highest dissolved oxygen was always found near the surface layer, with concentration near or slightly above saturation. The minimum was as low as 60 \(\mu \text{mol/kg} \) near 1000 m. A typical cross-section (OR 316, May, 1992) is given in Fig. 3a. The contours shoaled westward indicating upwelling. The strong vertical mixing in the South China Sea also tends to lower the oxygen concentration of waters above 1000 m. Because the South China Sea water has a strong influence near the Bashi Channel above 1000 m, the oxygen content was lowered accordingly (Chen and Huang, 1995).

As is shown in Fig. 4a, the typical fluxes of dissolved oxygen (OR 316, May 1992) ranged from \(-58\) to \(108\ \text{mmol/m}^2\) (positive sign indicates northward flow), with maxima near St. 5 and 26. Since the flux was dominated by oxygen concentration and current velocity, and both decreased with depth, the flux structure of dissolved oxygen was similar to the velocity structure. The gross flux of oxygen at this section was \(7.96 \times 10^4\ \text{mol/s} \) northward and \(1.42 \times 10^4\ \text{mol/s} \) southward, yielding a net flux \(6.55 \times 10^4\ \text{mol/s} \) down-stream, for this section between 121 and 130\(^\circ\)E. The segment between 121 and 123\(^\circ\)E contributes 36% to the oxygen flux. In May 1985 and June 1991 the segment between 121 and 123\(^\circ\)E contributed 54 and 80% of the northward oxygen flux. Only 30% of the Oct. 1990 flux was between 121 and 123\(^\circ\)E. There were large annual variations in oxygen

| Table 2. Transports of Dissolved oxygen, Nutrients and Carbonates at 21\(^\circ\)45’N Between 121 and 130\(^\circ\)E |
|---|----------------|--------------|----------------|----------------|----------------|----------------|
| May 1995* | DO \(10^4\)mol/s | PO\(_4\) kmol/s | NO\(_3\) kmol/s | SiO\(_2\) kmol/s | TA \(10^4\)mol/s | TCO\(_3\) \(10^4\)mol/s |
| Northward | 11.542 | 24 | 392 | 1156 | 122.18 | 116.42 |
| Southward | -7.571 | -12 | -198 | -431 | -60.02 | -52.85 |
| Net | 3.971 | 12 | 194 | 725 | 62.16 | 63.57 |
| Oct. 1990 | | | | | | |
| Northward | 9.533 | 24 | 351 | 672 | 85.35 | 77.49 |
| Southward | -8.348 | -12 | -155 | -290 | -40.09 | -35.57 |
| Net | 8.586 | 12 | 196 | 382 | 45.26 | 41.82 |
| June 1991 | | | | | | |
| Northward | 11.368 | 24 | 329 | 667 | 114.79 | 100.88 |
| Southward | -2.881 | -13 | -165 | -350 | -32.78 | -29.48 |
| Net | 8.487 | 11 | 164 | 317 | 82.00 | 71.40 |
| May 1992 | | | | | | |
| Northward | 7.954 | 24 | 335 | 549 | 103.40 | 90.57 |
| Southward | -1.415 | -3 | -36 | -75 | -13.59 | -13.04 |
| Net | 6.549 | 21 | 299 | 474 | 89.82 | 77.53 |

* 121–123\(^\circ\)E

| Table 3. Net Northward Transports of Dissolved Oxygen, Nutrients and Carbonates at 21\(^\circ\)45’N Between 121 and 123\(^\circ\)E |
|---|----------------|--------------|----------------|----------------|----------------|----------------|
| May 1985 | DO \(10^4\)mol/s | PO\(_4\) kmol/s | NO\(_3\) kmol/s | SiO\(_2\) kmol/s | TA \(10^4\)mol/s | TCO\(_3\) \(10^4\)mol/s |
| May 1990 | 7.395 | 15 | 232 | 730 | 84.49 | 79.21 |
| Oct. 1990 | 2.809 | 11 | 162 | 310 | 41.70 | 37.04 |
| June 1991 | 6.757 | 13 | 179 | 365 | 65.91 | 58.87 |
| May 1992 | 2.378 | 8 | 121 | 189 | 31.67 | 29.41 |
Fig. 3. Cross-section of (a) dissolved oxygen; (b) phosphate; (c) nitrate; (d) silicate; (e) alkalinity and (f) total CO$_2$ near 21° 45' N for OR 316 cruise.
Fig. 3. (Continued)
Fig. 3. (Continued)
Fig. 4. Flux density cross-section of (a) dissolved oxygen; (b) phosphate; (c) nitrate; (d) silicate; (e) alkalinity and (f) total CO$_2$ near 21°45’ N for OR 316 cruise.
Fig. 4. (Continued)
(e) CRUISE316 TA FLUX DENSITY (mmol/m²s)

(f) CRUISE316 TCO2 FLUX DENSITY (mmol/m²s)

Fig. 4. (Continued)
fluctuations, ranging from 3.97×10^6 mol/s for May 1985 to around 8.5×10^6 mol/s for Oct. 1990 and June 1991 (Table 2).

The annual variations were most apparent between 121 and 123°E (Table 3). The Oct. 1990 and May, 1992 transports were low (2.61 and 2.38×10^6 mol/s, respectively) whereas the May 1985 and June 1991 transports were much higher (7.31 and 6.76×10^6 mol/s, respectively). By way of comparison, Brewer et al. (1989) reported an oxygen transport of 4.89×10^6 mol/s above 850 m in the Florida current between Florida and the Bahamas (Nov. 1988).

Phosphate

The phosphate concentration increased with depth, ranging from almost zero near the surface to a maximum of about 3.0 μ mol/kg near 1200 m (Fig. 5b).

The typical distribution of the phosphate flux based on OR 316 data in May 1992 is shown in Fig. 4b. The values ranged from -61 to 176 μ mol/m2/s with a maximum near St. 3, 8 and 26. Since the phosphate concentration increased with depth but the current velocity decreased with depth, the maximum phosphate flux was located at 600 m. The Gulf Stream shows a similar pattern (Csanyi, 1990). The total flow of phosphate across this section was 24 kmol/s northward and 3 kmol/s southward, yielding a net northward flow of about 21 kmol/s (Table 2) of which 38% was between 121 and 123°E.

There were large annual variations (Tables 2, 3) ranging from 11 to 21 kmol/s between 121 to 130°E and 8 to 15 kmol/s between 121 and 123°E. The segment between 121 and 123°E contributed 15 and 13 kmol/s, respectively, of northward phosphate flow in May 1985 and June 1991 when the Kuroshio was strong. These values were higher than the net northward flow between 121 and 130°E, implying that phosphate was transported southward between 123 and 130°E during these two cruises.

In Oct. 1990 when the Kuroshio was weak, the northward phosphate transport was still concentrated between 121 and 123°E (11 kmol/s) vs. only 1 kmol/s between 123 and 130°E. In May 1992 the northward phosphate flow spread out more evenly with 8 kmol/s between 121 and 123°E and 13 kmol/s between 123 and 130°E.

Nitrate

The vertical distribution of nitrate for OR 316 (May 1992) is similar to that of phosphate (Fig. 3c). The concentration varied from near zero at surface to above 42 μ mol/kg at the maximum near 1200 m. The flux ranged from -844 to 2572 μ mol/m2/s (Fig. 4c), and also had the same pattern as that of phosphate with a mid-depth maximum. The cores at St. 3, 8, 26 were also apparent. The total northward and southward transports were 335 and 36 kmol/s, respectively (Table 2). The net northward transport between 121 and 130°E was 299 kmol/s which was 14 times the phosphate transport. Large annual variations were found (Table 2) with net northward transports ranging from a low of 164 kmol/s in June 1991, to about 195 kmol/s in May 1985 and Oct. 1990, to a high of 299 kmol/s in May 1992.

When the Kuroshio was strong in May 1985 and June 1991 the section transported 232 and 179 kmol/s, respectively, of nitrate northward between 121 and 123°E (Table 3). Between 123 and 130°E the net transports were 38 and 15 kmol/s, respectively, southward.

In Oct. 1990 the segment between 121 and 123°E transported 83% of the nitrate northward. In May 1992 the percentage was 40%. In both years the segment between 123 and 130°E also transported nitrate northward.

Silicate

The silicate concentration ranged from near zero at surface to above 150 μ mol/kg near 2000 m (OR 316, Fig. 3d).

The flux of silicate ranging from -2 to 4.3 mmol/m2/s is shown in Fig. 4d (OR 316). It shows a silicate stream core at between 400 and 800 m. The negative values between St. 10–21 reflected the southward transport of currents. The total silicate transport was 549 kmol/s northward and 75 kmol/s southward (May 1992). The net northward flow of silicate between 121 and 130°E was 474 kmol/s (Table 2), some 22 times the net phosphate transport and 1.6 times the nitrate transport. Large annual variations were found (Table 2), ranging from

Similar to what happened for phosphate and nitrate, the northward silicate flux occurred mostly between 121 and 123°E (Table 3). In May 1985 and June 1991 when the Kuroshio was strong, this segment contributed, respectively, 730 and 385 kmol/s northward. The segment between 123 and 130°E contributed 5 and 48 kmol/s, respectively, southward. Even when the Kuroshio was less concentrated in Oct. 1990 and May 1992, the segment between 121 and 123°E transported 81 and 38%, respectively, of silicate northward.

Alkalinity

The alkalinity ranged from about 2000 μ mol /kg near surface to above 2400 μ mol/kg near 2000 m (OR 316, Fig. 3e). The calculated alkalinity flux (Fig. 4e) had band structures similar to the geostrophic velocity because the spatial distribution of alkalinity was relatively homogeneous (Fig. 2d). The down-stream maximum flux of alkalinity at this latitude in May 1992 was 1203 mmol/m²/s near St. 26. The southward maximum flux was 100 mmol/m²/s at St. 20. The alkalinity (Table 2) transported by the Kuroshio was 103.4 × 10⁴ mol/s northward. The southward transport was 13.6 × 10⁴ mol/s, thus the net alkalinity transport was 89.8 × 10⁴ mol/s, northward between 121 and 130°E.

There were large annual variations (Table 2) ranging from a low of 45.3 × 10⁴ mol/s in Oct. 1990, to 62.2 × 10⁴ mol/s in May 1985, to 82.0 × 10⁴ mol/s in June 1991, to a high of 89.9 × 10⁴ mol/s in May 1992. These values are comparable with the Florida current transport of 71.7 × 10⁴ mol/s in Nov. 1988 (BREWER et al., 1989).

In May 1985 the section transported 84.5 × 10⁴ mol/s of alkalinity northward between 121 and 123°E. By way of comparison, the segment between 123 and 130°E transported 22.3 × 10⁴ mol/s of alkalinity southward. In other years the segment between 121 and 123°E transported northward most of alkalinity, 92% in Oct. 1990, 80% in June 1991 and 88% in May 1992, respectively.

Total CO₂

The distribution of total CO₂ was similar to that of alkalinity, with concentrations ranging from 1.5 mmol/kg near surface to 2.4 mmol/kg near 2000 m (OR 316, Fig 3f).

Total CO₂ flux (Fig. 4f), similar to that of alkalinity, also showed the band structure. In May 1992 the northward maximum flux of about 1039 mmol/m²/s was located near St. 26, and southward maximum of 100 mmol/m²/s was located at St. 20. The transports were 90.6 × 10⁴ mol/s northward and 13 × 10⁴ mol/s southward. These values yielded a net northward flow of 77.5 × 10⁴ mol/s between 121 and 130°E. Large annual variations were also found (Table 2) with a pattern similar to that of TA. The lowest value was 41.8 × 10⁴ mol/s in Oct. 1990. BREWER et al. (1989) reported a transport of 63.9 × 10⁴ mol/s by the Florida current in Nov. 1988.

In May 1985 the transport was 63.6 × 10⁴ mol/s, in June 1991 it was 71.4 × 10⁴ mol/s, and in May 1992 it was 77.5 × 10⁴ mol/s, all northward. Also similar to the pattern for TA, the TCO₂ transport was 79.2 × 10⁴ mol/s northward between 121 and 123°E but was 15.6 × 10⁴ mol/s southward between 123 and 130°E. In other years the 121-123°E segment transported 89%, 82% and 38%, respectively, of the northward TCO₂ flow.

4. Conclusion

1. The Kuroshio could clearly be identified in May 1985 and June 1991 when the northward volume transports above 1000 m were 38 and 53 Sv, respectively, between 121 and 123°E along 21°45′N. Whereas between 123 and 130°E the transports were southward, 18 Sv in May 1985 and 3 Sv in June 1991. In Oct. 1990 the Kuroshio was weak yet the total northward flux of 19 Sv between 121 and 130°E was still mostly concentrated between 121 and 123°E (15 Sv). After the El Nino, the northward volume transport was large (39 Sv) in May 1992 but widely spread between 121 and 130°E. The Kuroshio transport between 121 and 123°E was relatively low at 12 Sv.

2. The fluxes of phosphate, nitrate and silicate by the Kuroshio at 21°45′N showed along-
stream cores between 400 and 600 m, below
the high-velocity core (between the surface
and 200 m) of the Kuroshio current.
3. The distributions of fluxes for dissolved oxy-
gen, alkalinity and total CO\textsubscript{2} were simi-
lar to the velocity structure, indicating that they
were dominated by the velocity field.
4. The net northward transports for dissolved oxy-
gen, phosphate, nitrate, silicate, alkalinity
and total CO\textsubscript{2} were 4.0–8.6 \times 104 mol/s, 11
–21 kmol/s, 164–299 kmol/s, 317–725 kmol/s,
45.3–89.8 \times 104 mol/s and 41.8–77.5 \times 105 mo-
l/s, respectively. These were mostly concen-
trated between 121 and 123°E except after
the 1992 El Nino. The fluxes were frequently
southward between 123 and 130°E.

Acknowledgements
The National Science Council supported the
research (NSC 83-0209-M-110-002K, NSC 83-
0209-M-002a-030Y). C.H. WANG, M.H. HUANG
and the captains and crew of R/V Ocean Re-
searcher I provided assistance. An anonymous
reviewer provided valuable comments.

References
Kuroshio transport using an inverse technique.
Deep-Sea Research, 38, S21–S44.
BREWER, P.G. and D. DYRSSEN (1987): Ocean chemical
fluxes across 25°N in the Atlantic Ocean. Di-
cussion paper prepared for the International JCOFS
dioxide transport by ocean currents at 25°N lati-
The structure of the Kuroshio southwest of Kyu-
shu: velocity, transport and potential vorticity
CHEN, C.T.A. (1984): Carbonate chemistry of the
Weddell Sea, Department of Energy Technical
south Philippine Basin, Bulletin of Marine Sci-
ence and Technology, 10, 26–35. (in Chinese).
CHEN, C.T.A., M.H. HUANG, S.L. WANG, G.S. KUO, LL.
CHENG and B.G. WANG (1993a): Preliminary report of
Ocean Researcher I cruises 257 and 262:
October - November, 1990 in the Philippine Sea,
Univ. 132pp. (in Chinese).
CHEN, C.T.A., M.H. HUANG, S.L. WANG, G.S. KUO and
C.H. WANG (1993b): Preliminary carbonate data
report of Ocean Researcher I cruises 258 and 257.
Univ. 65pp (in Chinese).
(1993c): Preliminary data report of Ocean Re-
searcher I cruise 316: carbonate and suspended
particulate matter, Inst. Mar. Geol., Tech. Rep. 15,
oxygen, nutrients and carbonates by the
Kuroshio current, Chinese Journal of Oceanology
and Limnology, 12, 3, 220–227.
CHEN, C.T.A. and M.H. HUANG (1995): Carbonate chem-
istry and the anthropogenic CO\textsubscript{2} in the South
Csanady, G.T. (1990): Physical basis of coastal pro-
ductivity, EOS, 71 (36), 1069–1065.
Ichikawa, H. and R.C. Beardsley (1993): Temporal
and spatial variability of volume transport of the
Kuroshio in the East China sea, Deep-Sea Re-
search, 40, 3, 583–605.
masses in the Western Philippine Sea—physical
aspects, Acta Oceanographica Taiwanica, 17, 1–
17.
report of CHIPS-1, Institute of Oceanography,
National Taiwan University, 118pp.
JENG, H.Y. CHEN, S.L. WANG, T.Y. Kuo, L.G. SELIRIO
Nakano, T., I. KANeko and Y. Takatsuki (1994): The
Kuroshio structure and transport estimated by the
inverse method, Journal of Physical Oceanog-
raphy, 24, 3, 699–918.
Nitani, H. (1972): Beginning of the Kuroshio, In
Kuroshio, H. STOMMOL and K. YOSHIDA (eds.), Uni-
Jiann and C.C. Yang (1987): Primary investiga-
tion of the Western Philippine Sea water–chemi-
cal data from the CHIPS-1 expedition, Yearly
Journal of the National Taiwan College of Marine
Science and Technology, 21, 49–68.
PAI, S.C., K.L. JENG, K.M. YANG, C.C. YANG, S.P. CHENG,
Y.H. CHEN, S.W. CHUAng, S.L. WANG, M.H. HUANG,
report of Ocean Researcher I cruise 316, 88pp (in
Chinese).
gen and nutrient fluxes and budgets in the North
Atlantic Ocean, Deep-Sea Research, 38, Suppl. 1,
黒潮における酸素、栄養塩および炭酸塩のフクラス

C.T.A. CHEH, C.T. LIU and S.C. PAI

要旨：酸素、栄養塩類および炭酸塩の真の輸送量を求めるために、台湾東南沖の黒潮を横断する観測線（WOCE PR20）において、地衡流と合わせ溶存酸素（DO）、リン酸（PO₄）、硝酸（NO₃）、硅酸（SiO₂）、全アルカリ度（TA）、および全炭酸（TCO₂）を測定した。調査船オーシャンリサーチャーによる4航海（CHIPS-1, 1985年5月; OR 257, 1990年10月; OR 287, 1991年5月; OR 316, 1992年5月）の間に21°45'N, 121°-130°E間における1000m以浅の北向きの真の体積輸送は、それぞれ20, 19, 50および39Svであった。121°-125°E間の北向きの輸送が38および53Svであった1985年5月と1991年6月には明らかに黒潮が識別された。123°Eと130°Eの間には18および3Svの輸送量を持つ明らかな南向きの渦が認められた。1990年5月および1992年5月には、北向きの輸送は拡散的であった。黒潮の高速流動部では、栄養塩類のフクラスは“栄養塩類の河”の様態を示した。

酸素および炭酸塩のフクラス分布は、速度塩と同様の構造であった。4回の航海時における121°-130°E間の流れに沿ったDO, PO₄, NO₃, SiO₂, TAおよびTCO₂の真の輸送量は以下の通りであった。1985年5月は、3971(DO), 12(PO₄), 194(NO₃), 726(SiO₂), 6215(TAO)および8357(TCO₂)kmol/s; 1990年10月は6585(DO), 12(PO₄), 196(NO₃), 382(SiO₂), 4528(TAO)および4182(TCO₂)kmol/s; 1991年6月は8487(DO), 11(PO₄), 164(NO₃), 317(SiO₂), 82200(TAO)および71399(TCO₂)kmol/s; 1992年5月は6549(DO), 21(PO₄), 299(NO₃), 474(SiO₂), 89818(TAO)および77531(TCO₂)kmol/s。北向きのフクラスは121°Eおよび125°E間で検出され、一方南向きのフクラスはより拡散的であった。